下面我们通过实际测试数据来直观感受一下SiC 的优势。
1)开关损耗
图2是1200V HighSpeed3 IGBT(IGW40N120H3) 与CoolSiC™ MOSFET (IMW120R045M1) 在同一平台下进行开关损耗的对比测试结果。母线电压800V, 驱动电阻RG=2.2Ω,驱动电压为15V/-5V。使用1200V/20A G5 肖特基二极管 IDH20G120C5作为续流二极管。在开通阶段,40A 的电流情况下,CoolSiC™ MOSFET 开通损耗比IGBT 低约50%,且几乎不随结温变化。这一优势在关断阶段会更加明显,在25℃结温下,CoolSiC™ MOSFET 关断损耗大约是IGBT 的20%,在175℃的结温下,CoolSiC™ MOSFET 关断损耗仅有IGBT 的10%(关断40A电流)。且开关损耗温度系数很小。

2)导通损耗
图3是1200V HighSpeed3 IGBT (IGW40N120H3) 与CoolSiC™ MOSFET (IMW120R045M1) 的输出特性对比。常温下,两个器件在40A 电流下的导通压降相同。当小于40A 时,CoolSiC™ MOSFET 显示出近乎电阻性的特性,而IGBT 则在输出特性上有一个拐点,一般在1V~2V, 拐点之后电流随电压线性增长。当负载电流为15A 时,在常温下,CoolSiC™ 的正向压降只有IGBT 的一半,在175℃结温下,CoolSiC™ MOSFET 的正向压降约是IGBT 的80%。在实际器件设计中,CoolSiC™ MOSFET 比IGBT 具有更低的导通损耗。

3)体二极管续流特性
CoolSiC™ MOSFET 的本征二极管有着和SiC肖特基二极管类似的快恢复特性。25℃时,它的Qrr和相同电流等级的G5 SiC 二极管近乎相等。然而,反向恢复时间及反向恢复电荷都会随结温的增加而增加。从图4(a)中我们可以看出,当结温为175℃时,CoolSiC™ MOSFET 的Qrr略高于G5 肖特基二极管。图4(b)比较了650V 41mΩ Si MOSFET 本征二极管和CoolSiC™ MOSFET 本征二极管的性能。在常温及高温下,1200V CoolSiC™ MOSFET 体二极管仅有Si MOSFET 体二极管Qrr的10%。

- 相比其它MOSFET,CoolSiC™ 好在哪儿?
我们已经了解到,SiC 材料虽然在击穿场强、热导率、饱和电子速率等方面相比于Si材料有着绝对的优势,但是它在形成MOS(金属-氧化物-半导体)结构的时候,SiC-SiO2 界面电荷密度要远大于Si-SiO2,这样造成的后果就是SiC表面电子迁移率要远低于体迁移率,从而使沟道电阻远大于体电阻,成为器件通态比电阻大小的主要成分。然而,表面电子迁移率在不同的晶面上有所区别。目前常见的SiC MOSFET 都是平面栅结构,Si-面上形成导电沟道,缺陷较多,电子迁移率低。英飞凌CoolSiC™ MOSFET 采用Trench 沟槽栅结构,导电沟道从水平的晶面转移到了竖直的晶面,大大提高了表面电子迁移率,使器件的驱动更加容易,寿命更长。
SiC MOSFET 在阻断状态下承受很高的电场强度,对于Trench 器件来说,电场会在沟槽的转角处集中,这里是MOSFET 耐压设计的一个薄弱点。英飞凌采用了崭新的非对称沟槽结构,如下图所示。在这个结构中,沟槽左侧有N+源极及P基区,可以形成正常的MOS导电沟道;沟槽的另外一侧大部分都被高掺杂的深P阱包围,在阻断状态下,这个P阱可以减弱施加在沟槽栅氧上的电场强度;在反向续流状态时,可以充当快恢复二极管使用,性能优于常规MOSFET体二极管。
